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ABSTRACT

Algorithms for nonlinear eigenvalue problems (EP), often require solving selfconsistently a large number

of EP. Convergence difficulties may occur if the solution is not sought in a right neighborhood; if global

constraints have to be satisfied; and if close or equal eigenvalues are present. Multigrid (MG) algorithms for

nonlinear problems and for EP obtained from discretizations of partial differential EP, have often shown to

be more efficient than single level algorithms.

This paper presents MG techniques for nonlinear EP and emphasizes an MG algorithm for a nonlinear

SchrSdinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an

MG projection coupled with backrotations for separation of solutions and treatment of difficulties related

to clusters of close and equal eigenvalues; MG subspace continuation techniques for the treatment of the

nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and

_,ith the global constraints. The simultaneous MG techniques reduce the large number of selfconsistent

iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood

where the algorithm converges fast.

Computational examples for the nonlinear SchrSdinger EP in 2D and 3D, presenting special computa-

tional difficulties, which are due to the nonlinearity and to the equal and closely clustered eigen,¢alues, are

demonstrated. For these cases, the algorithm requires O(qN) operations for the calculation of q eigenvectors

of size N and for the corresponding eigenvalues. One MG simultaneous cycle per fine level was performed.

The total computational cost is equivalent to only a few Gauss-Seidel relaxations per eigenvector. An

asymptotic convergence rate of 0.15 per MG cycle is attained.

*This research was made possible in part by funds granted to Shlomo Ta'asan, a fellowship program sponsored
by the Charles H. Revson Foundation. Both authors were supported in part by the National Aeronautics and Space
Administration under NASA Contract No. NASl-19480 while the authors were in residence at the Institute for

Computer Applications in Science and Engineering, (ICASE), Mail Stop 132C, NASA Langley Research Center,
Hampton, Virginia, 23681, USA.





1 Introduction

Multigrid (MG) techniques for nonlinear problems and for eigenvalue problems (EP) such as many

large scale problems from physics, chemistry and engineering, have often shown to be more efficient

than single level techniques, [1], [2], [3], [4]. MG techniques can use efficiently features which are

generally not used by single level techniques, such as: the problems can be approximated on several

discretization levels; the solutions can be well approximated by solutions of coarse level problems;

only a few eigenv_lues and eigenvectors are sought; and the solutions are dominated by smooth

components [2]. Moreover, MG techniques have powerful solving capabilities, for example they can

approximate well the efficient inverse power iteration for eigenvalue problems [5].

MG techniques involve, in general, the processing of the problem on a sequence of discretization

levels. Usually, these levels are finite dimensional function spaces defined on increasingly finer grids,

[31, [41.

To treat nonlinear problems or systems of coupled problems, as in our case, algorithms often

involve a large number of selfconsistent iterations. The iterations may be inefficient or may not

converge if the approximated solution is not in a right neighborhood. The treatment of these

difficulties becomes harder when combined with eigenvalue difficulties. Algorithms for eigenvalue

problems face severe difficulties especially when close or equal eigenvalues are present, as usually

in SchrSdinger and in electromagnetism problems. Instead of approximating an eigenvector, pro-

cedures such as relaxations approximate a linear combination of eigenvectors with close or equal

eigenvalues. This we refer as eigenvector mixing. Mixing is especially severe when not all eigenvec-

tors with close eigenvalues are computed, i.e., incomplete clusters of eigenvectors are treated. In

such cases usually, the dominant components of the errors, hard to eliminate, consist of the not-

approximated eigenvectors of the cluster. The nonlinear SchrSdinger eigenvalue problem treated in

the computational examples is ill posed when defined on incomplete clusters. Global constraints

imposed on the solutions, such as norms, orthogonality, given average, introduce additional difficul-

ties in MG algorithms since these constraints are not conserved by inter-level transfers of solutions,

e.g., the transfers alter the norms and orthogonality of solutions.

Other difficulties, not treated in MG algorithms before, result from the fact that the cluster

structures, the multiplicity of eigenvalues, and the levels on which the solutions are poorly repre-

sented, are not known in advance.

The above mentioned difficulties are closely coupled and should be treated together to obtain

robust and efficient algorithms. Several previous MG methods approached some of the mentioned

difficulties. In no previous approach all of these difficulties were treated together. The treatment



of the nonlinearityandof the constraints should be done simultaneously with the update of eigen-

vectors, for keeping the approximate solution in a right neighborhood of the exact solution where

the algorithm is efficient.

This paper focuses on MG techniques for overcoming the mentioned difficulties and presents an

MG robust and efficient algorithm for the calculation of a few eigenvalues and their corresponding

eigenvectors for a nonlinear SchrSdinger eigenvalue problem.

The problem used for illustration is the computation of the first q eigenvectors u 1, ..., u q, and the

corresponding smallest eigenvedues (in modulus) _1, ..., Aq, of a discretized Schr6dinger Nonlinear

Eigenvalue problem of Hartree-Fock type:

Au i-(V+eW)u i-Aiu i, i= 1,...,q

= 2 +
Ilu ll-- 1 (1)

fW=O

Periodic boundary conditions are assumed. Eigenvectors in degenerate eigenspaces are required to

be orthogonal. The problem has to be solved in 2D and 3D. V is a given linear potential operator,

IV is a nonlinear potential, also to be calculated, Cl, c2, e are constants. If e is zero the problem

is linear else it is nonlinear since the potential W depends on the solutions. It is assumed that the

clusters containing the desired q eigenvectors are complete.

The problem is represented and solved on a sequence of coarse to fine levels. The algorithm is

based on separation of eigenspaces and of eigenvectors in eigenspaces, simultaneously treated with

the nonlinearity and constraints on all levels. Transfers between levels are used to reduce as much

as possible the heavy computational tasks from fine levels to inexpensive tasks on coarse levels. The

algorithm may be outlined by three steps: 1) get an approximation of the solution on a coarse level;

2) interpolate the solution to a finer level; 3) improve the fine solution by few MG cycles. Repeat

steps 2) and 3) until finest level is reached. The approximation on the coarse level at step 1) solves

first the linear problem ( e = 0 ), then the nonlinear one by a continuation procedure. An MG cycle

at step 3) starts on the fine level, transfers successively the problem down to coarser levels and

then up, returning to the fine level. On each level, the eigenvectors and the nonlinear potential are

updated, and on a coarse level, the eigenvectors are separated by projections and backrotations.

The separation of fine level eigenvectors by transfers coupled with coarse level projections is called

here m ultigrid projection (MGP) [6], [Z].

The simultaneous MG schemes reduce the many selfconsistent iterations to solve the nonlinearity

to a single simultaneous iteration. Due to MGP, the algorithm achieves a better computational

comple_ty and a better convergence rate than previous MG eigenvalue algorithms which use only

fine level projections. Increased robustness is obtained due to the MGP coupled with backrotations;



the simultaneoustreatmentof eigenvectorswith thenonlinearity_ndwith the globalconstraints.

In an adaptiveversionof the algorithm, [7], on eachnew fine level, clustersare identified,

testedfor completeness,completedif necessaryandimprovedby MG cyclesusingcoarserlevels.

Robustnesstestscontrolthe algorithm'sconvergenceandefficiency.Thesearedoneadaptivelyfor

differentclustersondifferentlevels.

It will beobservedthat the presentedtechniquesareapplicableto a muchlargerclassof prob-

lems. In particular, the algorithmswithout the treatmentof nonlinearitywereusedfor linear

eigenvalueproblemstoo, see[8].

The computationalexampleswerechosento includespecialdifficultiessuchasvery closeand

equaleigenvalues.The algorithmusesa few (i-4) fine levelcycles,and in eachcycle, two fine

levelGauss-Seidelrelaxationspereigenvectorareperformed.Thealgorithmyieldsaccurateresults

for very closeeigenvalues,and accuracyof morethan ten decimalplacesfor equaleigenvalues.

Exactorthogonalityof fine leveleigenvectorsis obtainedby thecoarselevelMGP.A secondorder

approximationis obtainedin O(qN) work, for q eigenvectors of size N on the finest level. An

asymptotic convergence rate of 0.15 per MG cycle is obtained.

For early works, theory and more references on MG eigenvalue algorithms, see [9], [10], [5],

[2], [3], [11], [4], [12]. The sequential MG algorithm performing the separation on finest level [2],

combined with a conjugate residual method, is applied to a Hartree-Fock nonlinear eigenvalue

problem in 2D in [13]. A previous version of the results presented here is given in the report [6].

The linear adaptive techniques presented in [14], [7], can be combined with the presented techniques

and are especially useful for the completion of clusters. Algorithms and more references for single

level large scale complex eigenvalue problems can be found in [15]. We refer to [16], [17], [18],

for theory on algebraic eigenvalue problems; and to [19], [20], [21], for aspects of the single level

technique used here, of obtaining a few eigenvectors and their eigenvalues for linear EP.

The MG projection and backrotations were first introduced in [22], and in the reports [6], [14].

An outline of a related computational approach presented here is given in [23].

The paper is organized as follows. The next two Subsections 1.1, 1.2, describe the MG discretiza-

tion of the Nonlinear Schr6dinger eigenvalue problem and the general FAS inter-level transfers. Sec-

tion 2 presents the central MG eigenvector linear separation techniques, i.e., the MG-solver-cycle,

the MGP, the backrotations, the MG-combined-cycles, and the linear-cluster-FMG algorithm. Sec-

tion 3 presents the MG nonlinear techniques, i.e., the MG cycle for the nonlinear potential W,

the simultaneous updating of eigenvectors and potential, the treatment of global constraints, the

subspace continuation procedures, and the FMG nonlinear eigenvalue algorithm. Section 4 presents

computational examples for the nonlinear Schrhdinger problem. Section 5 describes the adaptive



techniques,i.e., theadaptive-MG-cycle,the cluster-completion,therobustness-tests,the adaptive-

FMG. In Subsection5.6arepresentedcomputationalexamplesfor the linearadaptivealgorithm.A

final subsectioncontainsdetailsandobservationson thelinearandadaptivetechniqueswhichwere

includedthereto keeptherestof the presentationsimpler.Conclusionsarepresentedin Section6.

1.1 The Discretization of the Nonlinear SchrSdinger Eigenvalue Problem

Assume that fi is a domain in R d, and let G1, G2, ..., Gm be a sequence of increasingly finer grids,

that extend over fL The space of functions defined on grid Gk is called level k. I_ denote transfer

operators from level k to level l, e.g., I_ can be interpolation operators.

problem (1), on finest grid Gk, has the following form:

akWk = -_ Z_=_(_) _+ _2
II_fIlk= 1 (2)
Ewd=o

If Gk is not tile finest grid then relations (2) include FAS right hand sides as shown in the next

sections. Here Ak is a discrete appr°ximati°nt° the Laplacian. It is desired that, on finest level, the

eigenvectors in degenerate eigenspaces be orthogonal. Periodic boundary conditions are assumed

for fl - a box in R d. The Wd denotes the j'th component of Wk on level k, P)_ is a transfer of the

finest level Vm to coarser level k, i.e., 4), = I_$G.

1.2 FAS Transfers

The following is a general formulation of the FAS, (Full Approximation Scheme [1]), which is applied

to the eigenvalue equations, to the separation of eigenvectors, to the nonlinear equation, and to the

global constraints. Let

FiU_= Ti (3)

be a level i problem, where Fi is a general operator and Ti is a right hand side. The level j problem

FjUj = Tj (4)

is an FAS transfer of the level i problem (3) if

% = ff(T_ - r_v_) + FjffV_ (5)

The level j problem (4) is used in solving the level i problem (3). The level i solution U°_d is

corrected with the level j solution Uj by the FAS correction:

v? _ : v__d+ _rj(vj- guy) (6)

The discretization of

4



If Ui is the exact solution of (3) then its transfer to level j, I[Ui, is the exact solution of (4). In

this case the correction (6) does not change the exact solution Ui.

2 On Multigrid Separation Techniques

The introduced algorithm combines MG linear eigenvalue techniques with techniques for nonlinear

problems. This section presents the MG linear eigenvalue techniques, i.e., the MG-solver-cycle,

the MG Projection (MGP), and the Cluster-FMG [7]. The main role of the MG-solver-cycle is to

separate a cluster from the other clusters while the main role of the MGP is to separate the eigenvec-

tors inside a cluster. The MGP is combined with backrotations which prevent undesired rotation,

sign flipping, and scaling of eigenvectors. Both separation techniques are used simultaneously in

MG-combined-cycles.

In the rest of this section, the problem

AU = UA (7)

is defined on a sequence of levels. The U denotes an eigenvector associated to the eigenvalue A.

The matrix A corresponding to the level i problem is denoted by Ai. For example, Ai may be the

matrices obtained by discretizing a continuous eigenvalue problem, on a sequence of grids.

2.1 Multigrid Solver Cycles

The MG-solver-cycle is a central tool for separating the desired eigenspaces and for separating

eigenvectors when the eigenvalues are different and well enough approximated. It can be regarded

as an approximation of the efficient inverse power iteration [18].

To motivate the MG-solver-cycle, consider the eigenvalue problem (7), where A is a square

matrix. If A' approximates well enough the eigenvalue A (with multiplicity 1 for convenience),

corresponding to an eigenvector U, then the inverse power iteration

U n+l = (A- A'I)-Iu n, Un+l = U"+ /IIU"+ II (8)

will converge fast (in a few iterations) to U (since the U component in U '_ will be multiplied at

each iteration by 1/(A - A') _ co, [18]). For large A it is too expensive to compute (A - h'I) -1,

but one can approximate (8) by solving iteratively:

(A - A'I)U TM = U '_, U TM = U'_+I/[IU'_+II[ (9)

which is equivalent to During the solution procedure, if U '_ approximates well enough U, then A'

can be improved, using a Rayleigh Quotient equality

(U_) T AUn = (Un) TUnA'. (10)



ForlargeA, theiteration(9)is impracticalfor singlelevelalgorithms,but it canbeapproximated

by MG cycles,whichhaveoftenshownto beefficient[2], [3].

Relation (7) canbe consideredin block form whereU is a matrix whose columns are the

eigenvectors corresponding to the eigenvalues of the diagonal matrix A. Relations (5) and (6) can

be considered in block form in the same way. In a simultaneous MG-solver-cycle, the problem (7)

is represented on the different levels in the FAS form:

F_Ui := AiUi - UiAi = Ti (11)

where Tm = 0 on the initial level m (finest usually) and Tj are computed by (5) for j < m, with

j = i - 1. Equation (11) is relaxed on each level and the solutions are corrected by (6).

An MG-solver-cycle from level m to level l, (l < m here), is defined by:

(Urn, A) _- MG-Solver-Cycle (m, Am, Urn, A, Tin, l)

For k = m,...,l (step by -1) do:

U_ _Relax (m, Ak, Uk, A, Tk, k, I)

If k > l Transfer:

k-1
Uk-1 =If Uk,

Tk-1 = I_-l(Tk - AkUs) + &-lUk-1

End

For k = l,...,m (step by 1) do:

If (k > I) Correct Uk = Uk + I2_t(Uk-1 -I_ k-1 Uk)

Uk _Relax (m, Ak, Uk, A, Tk, k, l)

End

Such an MG cycle, where the algorithm goes from fine to a coarse level and comes back to the

initial fine level is called V cycle [1]. In this MG-Solver-Cycle, the A is kept constant on all levels.

2.2 Generalized Rayleigh Ritz Projections

This subsection presents a generalization of the Rayleigh Ritz Projection [18], for eigenvalue prob-

lems with right hand side. The Rayleigh Ritz Projection is used to find the eigenvectors when only

linear combinations of the eigenvectors are known (separation of eigenvectors).

Consider the eigenvalue relation:

AV = VA (12)
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whereA = diag(A1,..., Aq) contains on the diagonal the q sought eigenvalues corresponding to the

sought eigenvectors which are the columns of V. Assume that U which satisfies

V = UE (13)

is given instead of V, where E is a q × q invertible matrix to be found. Substituting (13) into (12)

gives

AUE = UEA (14)

An FAS transfer (5) of (14) to another level yields an equation of the form

AUE= UEA+TE (15)

where the product TE is the FAS right hand side of (15) with known T.

(15) can be computed by solving the q × q generalized eigenvalue problem

UT(AU-T)E=(uTU)EA

Solutions E and A for

(16)

obtained by multiplying (15) by U T. For T = 0, the usual Rayleigh Ritz Projection is obtained.

The process of obtaining (E, A) given (A, U, T) is denoted by

(E, A) ,--- GRRP( A, U, T) (17)

and is refered later as the Generalized Rayleigh Ritz Projection (GRRP).

2.3 Multigrid Projections

The solutions E and A of (15) can be obtained by art FAS MG procedure. Consider (15) written

as a level i problem:

AiU_E - UiEA = TiE (18)

Then the FAS transfer of (18) to level j is

AjU3E- UjEA = TiE (19)

where Uj = I_Ui. TiE is computed by (5), and results in

Tj = IJi(Ti - AiUi) + AjIiUi (20)

A solution (E,A)of (18) is a solution of (19). The solutions (E,A)of (19) can be obtained by a

GRRP.

Problems (18) and (19) have the same form. Hence problem (19) can be further transferred

in the same FAS way to other levels and to perform the GRRP on the last level, e.g., on coarsest



level. The processof obtaining(E,A) by transferringthe eigenvalueproblemto other levelswill

becalledthe MG Projection(MGP). The FAStransfer(20) for the problem(19) is the sameas

the transferusedin the MG-solver-cyclefor theproblemAjUj - UjA = Tj. This makes possible to

perform the MGP simultaneously with the MG-solver-cycle, in MG-combined-cycles, as presented

in Section 2.5.

2.4 Backrotations

Backrotations are introduced to prevent rotations of solutions in subspaces of eigenvectors with

equal or close eigenvalues, and to prevent permutations, rescalings and sign changing of solutions

during processing. For example, backrotations are used after the computation of (E,A) by an

MGP, since E may permute or mix the eigenvectors in a degenerate eigenspace. Thus, if degener-

ate subspaces are present, the backrotation should bring E to a form close to block diagonal and

having on diagonal blocks close to the identity matrix. Each such block associated to a degenerate

subspace prevents mixing inside that subspace. These motivate the particular backrotation algo-

rithm presented next.

Backrotation

Input (E, A)

1) Sort the eigenvatues of A and

permute the columns of E accordingly

2) Determine the clusters of eigenvalues of A

to be considered degenerate, and

determine the clusters to be considered nondegenerate

3) For each diagonal block in E

associated with a nondegenerate cluster do:

bring to the diagonal the dominant elements of the block

permuting the columns of E,

and the diagonal of A correspondingl:_:

4) Let F be a block diagonal matrix

whose diagonal blocks are the diagonal blocks of E,

corresponding to the determined clusters.

replace each diagonal block which does not correspond

to a degenerate cluster by the corresponding identity matrix

5) Set E= EF -1.

6) Change the signs of columns of E

8



to get positive elements on diagonal.

7) Normalize the columns of E.

Output (E, A)

A backrotation step will be denoted by

(E, A) ,- Backrotation(E, A) (21)

2.5 Multigrid Combined Cycles

An MG-simultaneous-cycle combining an MG-solver-cycle with an MGP is described next. Uk is

the matrix whose q columns are approximate solutions of the level k problem AkUk = UkA + Tk,

where Tk is obtained by an FAS transfer from the level k + 1 problem. For level m, Tm= 0. In the

applications, m is the finest level involved in the cycle, Ic is the coarsest level and lp is a level on

which the GRRP and backrotations are performed.

(Urn, A, T,_) _ Solve-MGP (m, Am, Urn, A, Tin, lp, Ic, q)

For k = ra,...,Ic do:

Repeat u_ Times:

If k = Ip then (Uk, A, Tk) _ GRR-BR(m, Ak, Uk, A, Tk, k, lp)

Uk ,,--Relax (m, Ak, Uk, A, Tk, k, Ic)

If k > Ic Transfer:

k-1
Uk- 1 = [_ fk,

I k-l"_ AkUk) +Tk-1 = k _k- Ah-lUk-1

End

For k = Ic,...,m do:

If (k > Ic) Correct Uk = Uk + Ikk_l(Uk-1 -- I_-lUk)

Repeat u_ Times

Uk _Relax (m, Ak, Uk, A, Tk, k, lc)

If k = lp then (Uk, A, Tk) _ GRR-BR(m, Ak, Uk, A, Tk, k, Ip)

End

The GRR-BR separation algorithm used above is the following

(Uk, A, Tk) _ GRR-BR(m, Ak, Uk, A, Tk, k, Ip)

(E, A) _GRR(Ak, Uk, Tk)

(E, A) .--Backrotation(E, A)



TheMG-combined-cycle,Solve-MGP,is thecentralbuildingelementof theadaptivealgorithms

presentedin Section5.

2.6 The Cluster-FMG Algorithm

The Linear-Ctuster-FMGalgorithmstartsona coarsestlevel,for simplicity Ip = Ic = 1, peforms 3'

cycles Solve-MGP on each level and interpolates the solutions to the next level. In this way, the

fine level initial solutions are in a close neighbourhood of the exact solutions, due to the coarser

level solutions computed. In this neighbourhood, the nonlinear algorithm is usually as efficient as

the linear algorithm.

(Urn, A, Tin) *-- Linear-Cluster-FMG (m, Am, Urn, A, Tin, 11, Ii, q)

For k = 1,...,m do:

Repeat 7 Times:

(Uk, A, Tk) *-- Solve-MGP (k, Ak, Uk, A, Tk, 11,11, q)

If k < m Transfer:

vk+l =

End

10



3 MG Techniques for the Treatment of the Nonlinearity

The central techniques for nonlinear problems are illustrated on the nonlinear SchrSdinger

eigenvalue problem (1). The treatment of the nonlinearity is performed by updating the nonlinear

potential IV simultaneously with the eigenvectors as well as with the global constraints. The

following MG techniques are presented: an MG-Potential-Solver cycle for W, a Simultaneous-FAS

cycle for W and eigenvectors, the treatment of the global constraints, the subspace continuation

procedures and the Simultaneous-Nonlinear-FMG algorithm.

3.1 An MG Solver Cycle for the Nonlinear Potential

In an MG cycle for updating W, we have two options: 1) to keep the uis fixed, and 2) to update

also the uis. The first case leads to sequential cycles where separate cycles are performed for W and

for u. The second case leads to simultaneous cycles. The two cases lead to different FAS transfers.

In this section the uis are considered fixed, while in Section 3.2 the uis are updated together with

W. The equation to be solved for the nonlinear potential W is:

AkWk = Pk

Here, for k < m, p_ is the FAS right hand side of (22)

(22)

On finest level, k = m,

Pk = Ik+l(Pk+l- mk+lWk+l) q- mkIk+l[;Wk+l

q

pk= -c, -- - (iui)+
i=1

An MG-Potential-Solver cycle for W, is:

(23)

(24)

(Win) .'- MG-Potential-Solver (re, Win,pro,I)

For k = m,...,l (step by -1) do:

t$_ ,--Relax (m, Wk,pk, k, l)

If k > l Transfer:

_'Vk_ 1 : Ik-l_/Vk,

pk-1 = I_-l(pk - AklG) + A__I _T___

End

For k = l,...,ra (step by 1) do:

11



If (k > l) Correct H/'k --- Wk + Ik_l(l_k-1 -

Wk ,,--Relax (m, IYk, Pk, k, l)

End

This is a usual V type cycle from fine level m to coarse level I. Other cycles can be defined as

well which involve a different sequence of visiting the levels. The work involved by such a cycles is

several times (about 4 times) the finest level relaxation work. Such a cycle can be used in the next

algorithms instead relaxations for W, but in the numerical tests this was not necessary. Similar

solver cycles can be defined for the u i.

3.2 The MG Simultaneous Updating of Nonlinear Potential and Eigenvectors

In the MG-Potential-Solver, the uis are fixed. An MG Simultaneous-FAS cycle is obtained by

combining the updating of uis with the updating of W. The nonlinear equations in FAS form are:

ak4 - (_ + ,wk)_ - _,4 = _ (25)

q

i2 (26)/xkWk + cl _(uk) -- c_ = Pk
i=l

Denote by Lk the operator

Lk = Ak -- 1,_ - eWk - ,Xi (27)

Both Wk and uk are considered variables. The r_ and Pk, in (25) and (26), are zero on the finest

level and equM to the FAS right hand sides on the other levels, namely:

_ = G,(_L_- rk+,_+_)+L_G,_L, (2s)
q q

pk= I_+l(pk+l--Ak+,Wk+, -c,_z___,(uik+,)2)+ AkI_+lWk+l +Cl_'_,(I_+iuik+l)2 (29)
i=1 i=1

The i,u k s are updated by relaxations, using (25) while l/Vk is considered constant. Wk is updated by

relaxations using (26) while 1Uk, ..., uqkare considered constants. The u}_'s are updated by projections

and backrotations on coarse levels. The Simultaneous-FAS cycle in Section 3.5 describes this

algorithm.

12



3.3 The MG Treatment of Global Constraints

The FAS treatment of global constraints are needed to keep the approximate solutions in a right

neighborhood of the exact solutions, where the algorithm is efficient. Keeping the solutions in a

right neighborhood is accomplished in conjunction with the simultaneous techniques, the subspace

continuation techniques, and the FMG algorithm. The solutions should satisfy several global con-

straints. The parameter cl is set arbitrarily to ca = 1 but it can be also used as a parameter in a

continuation technique. The potential V is periodic and the solutions u_ are periodic. Thus W is

periodic, therefore

law = (30)0

The integral is computed ower the whole domain. Discretizing (30) and using (26), c2 must satisfy

on the current finest grid:
Nm q

c2 = __,V'(u i _2/.xL_'. m,3 / I rrt
j----1 i=1

where Nm is the number of nodes on grid m. Since on current finest level

(31)

IIGII-- 1 (32)

c2 results independent of u and it is kept constant on all levels.

IfW is a solution then for any constant C, the W+C is also a solutions for the same eigenvectors

and the eigenvalues Ai - C. The constant C is fixed by the condition on W:

f W = 0 (33)

The FAS formulation of the discretized condition (33) is

Nm

_w_=0 (34)
j=l

on all levels, if the fine to coarse grid transfers conserve zero sums, e.g., as the full weighting transfer

which is often used. Else the appropriate FAS condition should be set using (5).

The FAS formulation of the norm condition [[uk]l = 1 becomes

Iluk-_ll= pk-, := III_-_kll + p_ -II_kll (35)

The norms are set to 1 after interpolating first time the solution to a current finest level and are

set to the p_ values, on coarsest levels, at the end of the backrotations. In (35) the same norm

notation has been used for the different norms on the different levels.
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3.4 MG Subspace Continuation Techniques

Thecentralideaofthe subspace-continuationtechniquesis to usea stablesubspaceof solutionsof a

giveneigenvalueproblemto approximatethe subspaceof solutionsof the problemperturbed.It is

important that the subspaceof the perturbedproblemis wellapproximatedandnot the solutions

of the perturbedproblem. The solutionsinside the stablesubspacemay be very sensitiveto

perturbations.Subspacecontinuationprocedurescan depend on one, on several, or on a continuum

of parameters, e.g., the continuation can be performed by the parameter # varied from 0 to 1 for

pW; or by two parameters a, # for aV + #W; or the parameters may be the elements of IV.

The continuation process on coarsest level which we used most in our tests is the following. First

the linear problem is solved by a sequence of relaxations, orthogonalizations and projections for

W = 0 fixed. This is to approximate first the subspace of the eigenvectors and not the eigenvectors

themselves. Then the problem with the potential

_,] = I/" + #W (36)

is considered, where p is a parameter. In the continuation procedure, the p increases in steps,

from 0 to e. At each step, the linear problem is resolved, considering W fixed, and afterwards W

is recomputed. Thus the subspace is updated first. This would mean to perform the continuation

on/tW. A continuation using two parameters is to solve first the linear problem for V = 0, then

perform a continuation on pW until # = e is reached and only after that to start a continuation

process on the linear part of the potential aV. The justification to do these comes from the fact

that V may split degenerate eigenspaces in clusters with very close eigenvalues. The continuation

having all elements of W as parameters, consists in the selfconsistent iterations in which the linear

problem is solved in turns with the updating of W.

The single level continuation procedures described above can be performed in an MG way,

leading to MG sequential-selfconsistent-schemes, as the one used in [13]. A more general MG

sequential-selfconsistent-scheme is the following MG-Sequential-Continuation algorithm, which it-

erates the simultaneous updating of the eigenvectors by MG cycles with the updating of W by MG

cycles:

(Urn, I,I%, A) "-- MG-Sequential-Continuation(Um, W_, A)

Set p = 0

While 0 <_ p < e do :

solve until convergence:

1) Solve the linear problem for fixed Wm and potential l_ + pHJ_

14



(Urn, A, rm) _ U-Simultaneous-FAS(ra, q, Urn, H_; A, Lm, rm, ul, v2)

2) Solve for W_ keeping Urn, A fixed:

(H_) _- MG-Potential-Solver (ra, W_, p_, !)

Update Wm such that: _j=Nm 1 WJm -- 0

Increase p

The above U-Simultaneous-FAS algorithm is obtained by removing from the Simultaneous-FAS

algorithm presented in Section 3.5 the updating of W,p,p. This is an algorithm for updating

simultaneously the eigenve ctors, which separates the eigenvectors by projection on a coarse level.

The different MG cycles for the eigenvectors and potential may have different coarsest levels.

3.5 The Simultaneous Nonlinear FMG Eigenvalue Algorithm

Assume for simplicity, in this section, that on coarsest level k = 1, all eigenvectors can be well ap-

proximated. Denote by Uk 1= (uk, ..., u_) the matrix on level k having columns the approximations

of the desired q eigenvectors, corresponding to the eigenvalues of A = diag(A1, ..., Aq). Assume the

same type of vector notations for rk, Pk, Pk The Simultaneons-Nonlinear-FMG algorithm for q

eigenvectors, m levels, reads:

Simultaneous-Nonlinear-FMG(m, q, Urn, Wrn, A, Lrn, rm, Pro,Pro, Vl , V2, 7)

Set U1 random, A = 0, W1 = 0

For k = 1 until m do:

1) Ifk=lget:

(Uk, Wk, A) *-- Continuation(Uk, l/Irk, A)

Ifk<mthen: k=k+l

2) Interpolate

u, = vk-, ,

wk = IL1Wk-a

v_q flt i _2 / gk3) Set rk = 0, Pk = l, C2 ---- _"_j/V=kl /--,i=1 t, k,j! / , Pk : 0

4) Do 7 times :

(Uk, Wk, A) _ Simultaneous-FAS(k,q, Uk, Wk, A, Lk, rk,pk,pk,,1,u2)

endif
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Continuation(Uk, Wk, A)

Set It = 0

While0_<p_<edo:

If p = 0 get U_, A by Relaxations, Orthogonalizations and Projections

else solve until convergence steps 1, 2:

1) Solve the linear problem for Uk, A by Relaxations and Projections.

q i 2 _v_l W, j = 02) Solve for IYk : AkIfk + cl _i=l(uk) = c2,

endif

Increase tt

Simultaneous-FAS(k, q, Uk, Wk, A, Lk, rk, Pk, Pk, ul , u2)

For k = m,...,1 step -1 do:

If k = 1 do:

1) (Uk, lVk, A) _ CoarseLevel(k, q, Lk, Uk, Wk, A, rk, Pk, Pk)

Else

2) Relax ul times with initial guess Uk,Wk :

AktYk + Cl z._i--=lt k] -- c2 = Pk, 1 t¢

LkUk = rk

3) Compute the residual rk = rk - LkUk

k-1 rk-1 r4) Restrict rk-1 = Lk-llk Uk + I k k

5) Set Pk-1 = Ak-llk-lBrk + Eq=l(Ik-lu_:) 2 -{-Ik-l( pk -- Aklek -- Eq=l(U}¢)2)

6) Set Pk-1 = III_-_Ukll + pk -IIUkll

7) Restrict :

Uk-1 = I_-l Uk,

tVk-1 = I_-lWk

endif

For k = 2,...,m step 1 do:

9) If k < m Interpolate a,nd FAS correct:

I:Vk : lYk + g_,(m-, - I2-_Wk)

endif

10) Relax _2 times:

LkUk = rk
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AkWk + cl Ei=l(uk) - c2 = Pk =

CoarseLevel( k, q, L k, Uk, B_, A, rk, pk, pk)

Do until convergence :

1) Update (Uk, A) by Projection and Backrotation

2) Solve for W:

q i 2 Nk I&_j_ 0AkWk+ctEi=_(Uk) --c2=pk, Ej=_ -_ .

3) Relax LkUk = rk

The constant ",/ is the number of cycles performed on each level. The ul, (v2) is the number

of relaxations performed in the simultaneous cycle, on each level in the path from fine to coarse,

(coarse to fine). Such a V cycle will be denoted V(vl, v2) and the FMG with 7 cycles as above will

be denoted by 3' - FMG - V(ul, v2).

If all desired eigenvectors cannot be well approximated on coarsest level then the Nonlinear-

FMG algorithm can be used in an adaptive version in which the Nonlinear-FMG is performed

for clusters of close or equal eigenvalues, each cluster having its own coarsest level. The single

difference is that in the computations of p, the sums for the eigenvectors are performed not only for

the eigenvectors in the cluster but for all eigenvectors in the other approximated clusters, on the

common levels, (else a restriction of W can be used). The clusters of close and equal eigenvalues

have to be completed in order to obtain robustness and efficiency. The constants "y, ul, u2 and the

coarse level on which to perform the projection efficiently can be found adaptively. For these the

adaptive techniques presented in [7] can be used.

3.6 Storage, Work and Accuracy

i ofIn the algorithm presented in the previous section, storage is required for the q eigenvectors u k

size N on finest grid, the potentials and the corresponding right hand sides, on all levels, giving an

overall estimate of memory of order O(3(N + 3)) for problems in 2-D and 3-D. The work requires

O(N) operations per eigenvector and O(N) operations for the nonlinear potential. The work

performed on coarsest grids should be added to these estimates. Usually this work does not change

the complexity of the algorithm, being only a part of the fine level work. In the case of degenerate

or clustered eigenvalues, if zero scalar products are needed on finest levels, inside the degenerate or

clustered eigenspaces, then orthonormalizations may be required within these eigenspaces on the

finest level. However, as can be seen in the computational examples, accurate orthogonality inside

degenerate clusters may be obtained by coarse level separation also. The schemes presented O(h 2)
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accuracyfor the5-point in 2-Dand9-point in 3-DLaplacian,for an 1-FMG-V(1,1)algorithm,as

seenin the outputs.

4 Computational Results

The Tables 1, 2, 3 present results for the 2D, nonlinear eigenvalue problem (1) with the potential

V(x, y) = 14 - (27r/a)2f(x, y)/(7 + f(x, y)). Here f(x, y) = sin(lOx + 10y) + cos(lOx + 10y),

( a = 27r/10 is the size of the domain in both directions ). V is chosen so in order to determine a

cluster consisting of two clusters of two equal eigenvalues. An 1-FMG-V(1,1) algorithm was used

to show that one V(1, 1) cycle per level is enough to obtain a second order convergence towards

the continuous solution. See for this the residuals at the beginning of the first V cycle on each level

decreasing with a factor about 4 from one level to the next finer level. (The mesh size decreases

with a factor of 2 from one level to the next finer one.) Seven V cycles were performed on finest

level 6, to show the convergence rate for eigenvectors and potential, better than 0.15 in all cycles.

The convergence rate is the same for all eigenvectors in the cluster, of order 0.15 in all cycles from 3

to 7. For the potential W, three relaxations were used, but an MG cycle for W could be employed

as well instead (this was not needed in the tests performed). The separation by projection is

performed on level 2 instead of i and the eigenvalue systems were solved exactly on coarsest level.

The eigenvectors are normalized to 1 on finest level. The eigenvalues presented are computed by

Rayleigh quotients on finest levels. (Generally, the fine level RayIeigh quotients are not necessary,

the coarse level projection providing the accurate eigenvalues, but showed to improve the efficiency

of at least the first cycie on each level. In the first cycle, the eigenvalues are improved by the

quotients and used on the path down before they are recompnted by the projection. This first

cycle is generally sufficiently efficient for obtaining a second order scheme so that additional cycles

are not necessary at least until finest level where one may desire accurate converged solutions, thus

would employ several more cycles.) The degenerate eigenvalues come out with 11 to 14 equal digits.

The convergence rate of the nonlinear potential is also about 0.15 per cycle, as for the eigenvectors,

see Table 2. Accurate separation is obtained in the cluster and in degenerate eigenspaces, although

the separation was performed on the coarse level 2, the scalar products on level 6 being of order

10 -12, see Table 3.

The Tables 3 to 7 present results for problems in 3D which are similar with the 2D results. The

first seven eigenvectors were sought. The problems were discretized on three levels. The cycles

were V(1, 1) and the projections were performed on second level.

The potential V(x, y, z) = 14 - lO0_in(lOx + 10y + 10z)/(30 + sin(lOx + 10y + 10z)), provides a

cluster of six degenerate eigenvalues, presented in Table 4. The approximations of the degenerate
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eigenvaluespresent13equaldigits,onlevels2and3. Theresultsin Table5arefor thesameproblem

with nonsymmetricV, Y(x, y, z) = 14-lO0.sin(3Ox+2Oy+lOz)/(30+sin(3Ox+2Oy+ 10z)). On first

level, V splits the previous cluster of six eigenvalues into two degenerate clusters of two and four

eigenvalues. On levels 2 and 3, the cluster of four degenerate eigenvalues splits into two clusters of

two degenerate eigenvalues. The degenerate eigenvalues present 14 equal digits. The six clustered

eigenvalues have the first 5 digits equal. On level 3, the eigenvectors come out exactly orthogonal,

their scalar products are presented in Table 6. Table 7 shows the residuals of the nonlinear potential

W. The fact that the cluster structure differs on different levels introduces special computational

difficulties. The problem has to be defined on complete clusters of eigenvectors and the clusters

have to be completed. These difficulties can be detected and treated by the adaptive techniques

[7].
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[[ cycle I1 vector lstart res. [ end res. [ eigenvalue I[

[[ LEVEL1 J_

0 .37E- 13

0.12E-12

0.85E-13

0.74E-12

.12E-11

0.46E-13

0.84E-I 3

0.79E,-13

0.26E-12

0.45E-12

-0.15528834591395E+02

-0.90047054014218E+02

-0.90047054014218E+02

-0.10369602966161 E+03

-0.10369602966161E +03

LEVEL2

0.44E-I-01 0.50E-03

0.30E+02 0.22E-01

0.30E+02 0.22E-01

0.32E+02 0.47E-01

0.32E+02 0.47E,-01

0.17E-05 0.60E-08

0.43E-04 0.88E-07

0.43E-04 0.88E.-07

0.19E-03 0.84E--06

0.19F_,-03 0.84E-06

LEVEL3

-0.15182335042395E+02

-0.10144043667188E+03

-0.10144043667188E+03

-0.12014770030904E+03

-0.12014770030904E+03

-0.15182335072480E+02

-0.10144043560798E+03

-0.10144043560798E+03

-0.12014769418108E+03

-0.12014769418108E+03

A
0.13E+01

0.11E-I-02

0.11E+02

0.12E+02

0.12E+02

0.59E-01 [

j o.48E-Ol /
[ o.46E-oi[
/ 0.88E-01 /

-0.I 5069813064192E+02

-0.I 0444903871181 E-I-03

-0.10444903871181 E+03

-0.I 2465344903258E+03

-0.12465344903258E+03

LEVEL4

0.36E+0o

0.31E+01

0.31E+01

0.33E+01

O.33E+Ol
0.22E.-01

0.32E-01

0.32E-01

0.19E-O1

0.19E-01

-0.15039575054851E-1-02

-0.1052 t 096070648E-1-03

-0.10521096070648E+03

-0.12580555034765E+03

-0.12580555034763E+03

LEVEL5

0.95E-01 0.65E-02

0.79E+00 0.13E-01

0.79E+00 0.13E-01

0.85E+00 0.85E,-02

0.85E+00 0.85E-02

-0.15031924453065E+02

-0.10540212079295E+03

-0.10540212079291E+03

-0.12609530927232E+03

-0.12609530927231E+03

LEVEL6 7

1 1 0.24E-01 0'. 17E,-02 -0.15030004902969E +02

2 0.20E+00 0.39E-02 -0.10544995 I04364E+03

3 0.20E+00 0.39E,-02 -0.10544995104306E+03

4 0.21E+00 0.28E-02 -0.12616785302342E-}-03

5 0.21E+O0 0.28E-02 -0.12616785302487E+03

3 1 0.17E-03 0.18E,-04 -0.15030004885985E-I-02

2 0.46E-03 0.55E-04 -0.10544995101300E+03

3 0.46E--03 0.55E-04 -0.I0544995101134E+03

4 0.34E-03 0.42E-04 -0.12616785302509E+03

5 0.34E-03 0.42E-04 -0.12616785302485Eq-03

7 1 0.29E-07 0.88E-08 -0.15030004896583E -}-02

2 0.92E--07 0.11E-07 -0.10544995101183Eq-03

3 0.92E-07 0.11E-07 -0.10544995101118E+03

4 0.80E,-07 0.11E-07 -0.12616785302732E+03

5 0.80E--07 0.99E-08 -0.12616785302532E+03

Table 1: The residuals and eigenvalues of the first 5 eigenvectors of the discretized Nonlinear

SchrSdinger eigenvalue problem in 2D, on 6 levels, computed by an 1-FMG-V(1,1) simultaneous

algorithm. On first level 5 cycles were performed and on second level 3 cycles. The projection

was performed on level 2. Seven cycles were performed on finest level to illustrate a constant

convergence rate per MG cycle of 0.15. The residuals are computed at start and the end of the

V(1, 1) cycles; and the eigenvalues at the end of the cycles by Rayleigh Quotients. The decrease of

the residuals by a factor of four from one level to the next (the start residuals in the first cycle, on

fine levels) indicate a second order convergence towards the differential solution for the eigenvectors.
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II cycleI start res. I endres.
I] LEVEL1

1 0.11E-09 0.10E-13

7 0.69E-14 0.70E-14

LEVEL2

1 0.35E+00 0.16E-03

2 0.16E-03 0.59E-06

3 0.59E-06 0.23E-08

LEVEL3

1 I 0.36E-01 0.13E-03
LEVEL4

_ 0.11E-03

5

1 I 0.17E-02 0.37E-04
LEVEL6

1 0.44E-03

2 0.11E-04

3 0.86E-06

4 0.98E-07

5 0.12E-07

6 0.14E-08

7 0.16E-09

0.11E-04

0.86E-06

0.98E-07

0.12E-07

0.14E-08

0.16E-09

0.21E-10

Table 2: The residuals of the nonlinear potential W of the discretized Nonlinear $chr6dinger

eigenvalue problem in 2D, on 6 levels, computed by an 1 -FMG-V(1,1) simultaneous algorithm.

Three relaxations were performed for W. On first level 5 cycles were performed and on second level

3 cycles. Seven cycles were performed on finest level to illustrate a constant convergence rate per

MG cycle of 0.15. The residuals are computed at start and the end of the MG cycles. The decrease

of the residuals by a factor of four from one level to the next (the start residuals in the first cycle,

on fine levels) indicate a second order convergence towards the differential solution for W.
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[] Vector !, Vector 2 Scalar "Product

2

2

2

2

3

3

3

4

4

1

2

3

4

5

0.10E+01

0.82E-14

-0.14E-12

0.12E-12

-0.30E-14

0.10E+01

0.12E-13

-0.12E-13

0.18E-13

0.10E+01

-0.17E-13

-0.86E-14

0.10E+01

0.14E-13

5 5 0.10E+01

Table 3: The scalar products of the first 5 eigenvectors of the discretized Nonlinear Schrbdinger

eigenvalue problem in 2D, on level 6, at the end of cycle 7. The projection was performed on level

2.

5 Adaptive Multigrid Algorithms

The techniques presented in this section were used first for linear eigenvalue problems, as we show

in [14], [7]. They can be used for the nonlinear eigenvalue problem in two ways: l) use them to

solve the linear eigenvalue problems in an MG continuation procedure; and 2) use them directly as

nonlinear algorithms by replacing the linear MG cycle with a nonlinear MG cycle, e.g., with the

Simultaneous-FAS cycle. Their central task, to detect the cluster structure and the parameters of

the algorithms is easily solved treating the linear problem first, i.e., e = 0 for eW. Then the found

parameters can be used for the presented Simultaneous-Nonlinear-FMG algorithm, as shown in the

computational examples in Section 4. (Note that for those examples the cluster structure had to
be known in advance as well as several parameters as number of relaxations and level on which the

projection should be performed efficiently. These are found by the techniques presented further.)

These adaptive techniques are used mainly on coarse levels, at initial stages of the algorithm, until

the cluster structure gets stabilised. It is often sufficient to use them only for the linear problem.

5.1 Motivation, Central Difficulties

The construction of adaptive MG techniques for eigenvalue problems is motivated by two types

of difficulties. The first type is related to the problems while the second type is related to the

algorithms involved. Difficulties related to the problems are: existence of close and equal eigen-

values; unknown cluster structure; different cluster structures on different levels; inter-level cross

correspondence of eigenvalues; and poor approximation of fine level eigenvalues and eigenvectors

by coarse level eigenvalues and eigenvectors. Additionally, the eigenvectors may be highly sensitive

with respect to some data, and the transfers may not conserve the dimensions of the eigenspaces.

The nonlinear eigenvalue problem is ill posed on incomplete degenerate subspaces.

Some of the central difficulties related to the algorithms are due to: incompleteness of clusters;

mixing of solutions; nonlinearity; global constraints; and unknown parameters of the algorithms,
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[] cycle [[vector ]start res. ] endres. eigenvalue
LEVEL1

1 0.89E-13

2 0.93E-09

3 0.93E-09

4 0.93E-09

5 0.93E-09

6 0.93E-09

7 0.93E-09

0.76E-13

0.38E-09

0.38E-09

0.38E-09

0.38E-09

0.38E-09

0.38E-09

-0.14048591304840E+02

-0.95098529109559E+02

-0.95098529109559E+02

-0.95098529109559E+02

-0.95098529109559E+02

-0.95098529109559E+02

-0.95098529109559E+02

LEVEL2

4

1

2

3

4

5

6

7

1

2

3

4

5

6

7

0.90E+00

0.30E+02

0.30E+02

0.30E+02

0.30E+02

0.30E+02

0.30E+02

0.22E-07

0.30E-03

0.30E-03

0.30E-03

0.30E-03

0.30E-03

0.30E-03

0.33E-02

0.18E+00

0.18E+00

0.18E+00

0.18E+00

0.18E+00

0.18E+00

0.i7E-08

0.23E-04

0.23E-04

0.23E-04

0.23E-04

0.23E-04

0.23E-04

-0.1404()i 2-842_'76 IE + 02

-0.10899132948707E+03

-0.10899132948707E+03

-0.10899132948707E÷03

-0.10899132948707E+03

-0.10899132948707E+03

-0.10899132948707E+03

-0.14040128424469E+02

-0.10899126009610E+03

-0.10899126009610E+03

-0.I0899126009610E+03

-0.10899126009610E+03

-0.10899126009610E+03

-0.10899126009610E+03

LEVEL3

1

2

3

4

5

6

7

1

2

3

4

5

6

7

0.25E-_00

0.tlE+02

0.11E+02

0.11E+02

0.11E+02

0.11E+02

0.11E+02

0.58E-03

0.20E-02

0.20E-02

0.20E-02

0.20E-02

0.20E-02

0.20E-02

0.46E-01

0.69E+00

0.69E+00

0.69E+00

0.69E+00

0.69E+00

0.69E+00

0.65E-04

0.30E-03

0.30E-03

0.30E-03

0.30E-03

0.30E-03

0.30E-03

-0.14036829480230E+02

-0.1 i274758485900E+03

-0.11274758485900E+03

-0.11274758485900E÷03

-0.11274758485900E+03

-0.11274758485900E+03

-0.11274758485900E+03

-0.14036815617277E+02

-0.11274310146319E+03

-0.11274310146319E+03

-0.11274310146319E+03

-0.11274310146319E+03

-0.11274310146319E+03

-0.11274310146319E+03

Table 4: The residuals and eigenvalues of the first 7 eigenvectors of the discretized Nonlinear

SchrSdinger eigenvalue problem in 3D, on 3 levels, computed by an 4-FMG-V(1,1) simultaneous

algorithm. The linear potential is V(x, y, z) = 14 - lO0.sin(lOx + 10y + 10z)/(30 + sin(lOx + 10y +

10z)). On first level 7 cycles were performed. The projection was performed on level 2. The

residuals are computed at start and end of the V(1, 1) cycles; and the eigenvalues at the end of the

cycles. Observe the 6 accurately equal eigenvalues.
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II cyclellvector ]start res. I end res. I eigenvalue

II L
7

H ....

1 0.52E-12

2 0.19E-07

3 0.23E-07

4 0.47E-08

5 0.44E-07

6 0.43E-08

7 0.54E-08

L

1 0.13E+01

2 0.30E+02

3 0.30E+02

4 0.30E+02

5 0.30E+02

6 0.30E+02

7 0.30E+02

1 0.35E-10

2 0.38E-05

3 0.38E-05

4 0.17E-04

5 0.17E-04

6 0.37E-05

7 0.37E-05

L

0.13E+01

0.11E+02

0.11E+02

0.11E+02

0.11E+02

0.11E+02

0.11E+02

0.29E-02

0.64E-02

0.64E-02

0.92E-02

0.92E-02

0.55E-02

0.55E-02

EVEL1

0.23E-12

0.11E-07

0.59E-08

0.14E-07

0.12E-07

0.75E-09

0.64E-09

-0.14055580293076E+02

-0.95112505605267E+02

-0.95112505605267E+02

-0.95112516406102E+02

-0.95112516406102E+02

-0.95112516406102E+02

-0.95112516406102E:+02

EVEL2

0.13E-04

0.17E+00

0.17E+00

0.17E+00

0.17E+00

0.17E+00

0.17E+00

0.12E-10

0.21E-07

0.21E-07

0.83E-06

0.83E-06

0.17E-07

0.17E-07

-0.14053758492811E+02

-0.10901746968777E+ 03

-0.10901746968777E+03

-0.10901758164786E+03

-0.10901758164786E+03

-0.10901781869743E÷03

-0.10901781869743E+03

-0.14053758492812E+02

-0.10901741800157E+03

-0.10901741800157E÷03

-0.10901752982146E+03

-0.10901752982146E÷03

-0.10901776702773E÷03

-0.10901776702773E+03

EVEL3

0.25E+00

0.75E+00

0.75E+00

0.75E+00

0.75E+00

0.74E÷00

0.74E÷00

0.32E-03

0.96E-03

0.96E-03

0.17E-02

0.17E-02

0.80E-03

0.80E-03

-0.14051499340829E÷02

-0.11277655294003E+03

-0.11277655294003E+03

-0.11277700995289E+ 03

-0.11277700995289E+03

-0.11277731911554E+03

-0.11277731911554E÷ 03

-0.14051251375940E+02

-0.11277176295116E+03

-0.11277176295116E÷03

-0.11277225319175E+03

-0.11277225319175E+03

-0.11277260890858E+03

-0.11277260890858E+03

Table 5: The residuals and eigenvalues of the first 7 eigenvectors of the discretized Nonlinear

Schr5dinger eigenvalue problem in 3D, on 3 levels, computed by an 4-FMG-V(1,1) simultaneous

algorithm. The linear potential is V(x, y, z) = 14 - lOOsin(30x -4-20y -4-10z)/(30 + sin(30x -4-20y -4-

10z)). On first level 7 cycles were performed. The projection was performed on level 2. The

residuals are computed at start and the end of the 1/(1, 1) cycles; and the eigenvalues at the end

of the Cycles. Observe the 6 eigenvalues with 6 common digits in the cluster of 6 consisting in 3

degenerate clusters.
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[ Vector 1 Vector 2 Scalar product

2

2
2

2
2

2

3

3

3

3

3

4

4

4

4

1

2

3

4

5

6

7

2

3

4

5

6

7

3

4

5

6

7

4

5

6

7

0.10E+01

0.13E-16

0.15E-15

0.59E-15

0.28E-15

-0.20E-13

0.12E-13

0.10E+01

-0.24E-15

0.51E-14

0.23E-14

-0.12E-14

-0.26E-14

0.10E+01

-0.84E-14

0.43E-13

-0.11E-14

0.44E-14

0.10E+01

-0.26E-14

0.11E-14

-0.16E-14

5 5 0.IOE+01

5 6 0.60E-14

5 7 0.86E-14

6 6 0.10E+01

6 7 -0.43E-14

7 7 0.10E+01

Table 6: The scalar products of the first 7 eigenvectors of the discretized Nonlinear SchrSdinger

eigenvalue problem in 3D, on level 3, a.t the end of cycle 4. The projection was performed on level

2.
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II cycleI start res. [ endres.
LEVEL1

7 [ 0.49E-10[ 0.20E-10
LEVEL2

1 0.38E+00

2 0.13E-04

3 0.72E-07

4 0.20E-08

0.13E-04

0.72E-07

0.20E-08

0.99E-10

LEVEL3

1 0.30E:01

2 0.39E-03

3 0.52E-04

4 0.72E-05

0.39E-03

0.52E-04

0.72E-05

0.10E-05

Table 7: The residuals of the nonlinear potential W of the discretized Nonlinear Schr6dinger

eigenvalue problem in 3D, on 3 levels, computed by an 4 -FMG-V(1,1) simultaneous algorithm.

Three relaxations were performed for W. The residuals are computed at start and the end of the

MG cycles.

such as iteration numbers, relaxation parameters, step sizes in continuation procedures, and levels

on which to apply a given procedure.
These central difficulties can be further grouped in difficulties related to a) dusters, mixing and

nonlinearity, and b) unknown parameters of subroutines. The techniques introduced for treating
the difficulties related to clusters, mixing and nonlinearity are the adaptive separation and com-

pletion of clusters on different levels, the simultaneous processing of clusters, the MG projections

and backrotations, the subspace continuation technique, the treatment of global constraints and

the simultaneous cycles. The techniques introduced for treating the difficulties related to unknown

parameters are the robustness tests. These techniques are incorporated in the following adap-

tive algorithms: the Adaptive-MG-Cycle, the Cluster-Completion, the Robustness-Tests, and the

Adaptive-FMG.

5.2 Adaptive Multigrid Cycles

Efficiency and convergence considerations require that the GRRP should be done for different
clusters on different levels in MG cycles. The coarsest level used to treat a given cluster may not

coincide with the level on which the GRRP is done. Other parameters such as the number of

relaxations in an MG cycle, may vary too.

Following is a description of a basic adaptive MG cycle which invokes different projection levels

for different clusters. Moreover, the coarsest levels used for different clusters are different.

Let q eigenvectors be approximated by j clusters on level k:

Uk = (U_,...,U_) (37)

where as before, each U_ approximates the solution of Ak_'_ = U_A i + T_ i = 1,...,j. For

each cluster U_ let t_ be the level on which the GRR-BR projection is done, and let l_ be the
coarsest level used in the MG process for this cluster. Here it is assumed that l_ < I_. Denote

lv ., , , ,...,= (/_,.. l_), Ic = (l_ ... l_) and by A = diag(A 1 AJ). Usually, on the finest level, k = m,
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Tk = (T_,..., T_) = (0,..., 0). An MG cycle consisting of a sequence of cycles for each cluster in

turn, for improving a given approximation (Um,A, Tm), is:

(Urn, A, Tin) ,'- Adaptive-MGP (m, Am, Urn, A, Tin, l_, l_, q)

For i= 1,...,j do:
i i i i i

,¢Ui'm,Ai, Ti) "- Solve-MGP (rn, Am, Uim, A ,T_,lp, l¢,q )
End

The choice of the different parameters of the algorithm is done by robustness tests discussed in

Subsection 5.4. Other Adaptive-MGP algorithms are obtained by replacing the Solve-MGP with

other cycles. For example a nonlinear algorithm is obtained using the more general Simultaneous-

FAS instead of Solve-MGP. On coarse levels on which W cannot be properly defined, (e.g., the sums

are not defined since the corresponding eigenvectors are not defined on that levels), restrictions of

a fine level W to coarse levels can be used instead. The further algorithms are for the linear case

but they have the same form for the nonlinear case since Adaptive-MGP is their basic element.

5.3 Cluster Completion Algorithm

When a procedure acts on an incomplete cluster then the dominant error components of the so-

lutions usually are formed of the nontreated eigenvectors of the completed cluster. It is hard to

eliminate these error components. This suggests to complete the clusters and to treat simultane-

ously all solutions belonging to the complete cluster. Simultaneous techniques can be easier coupled

with separation techniques at any stage of the algorithm. Since sequential techniques cannot invoke

separation at an arbitrary stage and hardly avoid difficulties due to mixing, better efficiency and

versatility is obtained for simultaneous techniques, as for sequential techniques.

The completion of a cluster is done by adding in turns a new vector u and improving it by MG

cycles. The separation of u from the other eigenvectors is performed by a GRR-BR. An approximate

eigenvalue is computed for this eigenvector, by a Rayleigh quotient. If the eigenvalue is close to

the cluster then the new vector is added to the cluster. If it does not belong to the cluster then the

cluster is considered complete. The convergence of the additional eigenvector is not sought. At the

end, the complete cluster is improved by several Adaptive-MGP cycles.

Denote by dj the current dimension of the cluster U_. The cluster completion and cluster ad-

dition algorithms are given by:

(U_, Aj , T_, q) _-Cluster-Completion(j, Ak, U_, A j, T_, 1¢, l_, q)

Until (Cluster-Completion-Test = TRUE) Do
Choose random u

Until < Aku, u > / < u, u > and residuals stabilize Do:

(u, AJa_,T_).-Adaptive-MGP(k, Ak,u, AJa_,T_,O,j lie, l)

Separate u from (U_,...,uJk)

Set .k=<Aku, u>/<u,u>

ui ,---
A 3 ..- diag(AJ, A)

q=q+l, dj=dj+l
End

Perform

(U_, AJ, T_ ) +- Adaptive-MGe(k, Ak, U_, AJ, T_, lJ, li, dj)
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(j, Uk, A, Tk, q) _Add-Cluster(j, Ak, Uk, A, Tk, Ip, Ic, q)

Set j = j + 1

(U_,A j ,T_,q)j _Cluster-Completion(j, Ak, UJk,AJ,TJk,lJ, lJc, q)

Set Uk : .... A : (A',...,AJ)

Observe in the nonlinear example from Table 1 that the cluster of four eigenvalues A2 - A.5

consists of two well enough separated eigenvalues. The four corresponding eigenvectors should be

treated together since they mix during the processing. They derive from a degenerate cluster (for

V = 0, e = 0) and have in a sense (of dominant Fourier components) the same smoothness. For

this example, the criteria which defines the clusters based on close eigenvalues does not work. The

complete cluster should include all eigenvectors which get mixed by the used procedures, in our

case for which the MG cycle is efficient. When accuracy improves, a cluster may split in several

clusters.

5.4 Robustness Tests

Robustness tests are techniques which find the values of parameters to be used in a procedure,

such that the procedure will be efficient for a given input. They are essential for robustness and

efficiency. The values of the parameters are obtained by optimization which is usually performed on

coarse levels, by a search, testing the procedure over a set of values of the parameters, and choosing

the values for which the procedure performs best, e.g., has best convergence rate. Previous results

are used to reduce the work involved in testing.

For a simple illustration, the robustness test which provides the values of the parameters (Ip, Ic)

for the Adaptive-MGP cycle is presented. It is assumed that during the FMG for a given cluster

these parameters will stabilize as the levels become finer.

A complete cluster on level L is called stabilized, if it corresponds to a complete cluster from level

L - 1 or L + 1 in the sense of the number of eigenvectors in the cluster, the values of the eigenvalues

and the eigenvectors approximation. To reduce the work required by a fine level robustness test,
it is assumed that corresponding stabilized clusters, will require the same parameters lc, Ip. Thus,

robustness tests are applied on coarse levels until clusters get stabilized. For non-stabilized clusters,

which would usually exist on coarse levels only, a search is performed for obtaining best values

for lc, lp. Such tests are inexpensive when performed on coarse enough levels, and often lead to

significant fine level work savings.

Denote by Ip,m, Ic,m the Ip and lq parameters, for an MG cycle for a given cluster, (Urn, A), on

level m, and by #(Ip,,n, It,m) := p(Adaptive-MGP(m, A._, Urn, A, Tin, Ip,m, It,m, q)) the convergence

rate (measured by the residual decrease) of the Adaptive-MGP cycle for the cluster (Urn, A), using

the parameters (lp,,n, l¢,m). The following algorithm updates (Ip,m,/c,m):

(Iv,m, Ic,m) _- Robustness-Test (m, Am, Urn, A, Tin, Ip, lc, q)
If (lli -x - i -211 _< )
then

(tp,_, Ic,m) : (tp,m-_, tc,m-_)
else

If (llA_- Am-_ll >_ e ) or if Am is not computed
then

Solve for (Iv,m, l_,m):

minle,lc p(lp, ic), Ic _ Ip <_ rn,
else
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(Iv,m,l_,m) = (tp,m-1, l_,,n-1)
endif

endif

Convergence Remark Convergence of the Adaptive-MGP is always attained using the values

found by the robustness test since at least the single level cycle converges, being a subspace iteration

algorithm (for Ic = Ip = m when p < 1). This was not proved for the nonlinear algorithm.

The minimization search is performed just for a few choices of parameters, since on coarse levels

only a few combinations of coarse level values of parameters exist. Similar algorithms are used for

determining the types, parameters and numbers of relaxations in MG cycles.

For the nonlinear algorithm parameters have to be found for the continuation procedures, e.g.,

the continuation steps need often to be small at initial stages but becomes larger when the solution

to the nonlinear problem becomes better approximated. The number of iterations decreases in

these cases as the efficiency of the cycles increases and tends to rich the efficiency of the linear

algorithms. When this efficiency is reached, one may consider that the approximate solution is in

a right neighborhood and may continue the FMG to next levels.

5.5 The Adaptive FMG Algorithm

During the FMG, coarse levels approximate the desired subspaces and the clusters of eigenvalues.

Coarse levels are also used to optimize the algorithm and to check the convergence of the sequence

of discrete solutions obtained on the sequence of levels towards the differential solution.. The full

MG algorithm uses as building blocks the Adaptive-MGP, Add-Cluster, Cluster-Completion and

Robustness-Test algorithms described before.
The full MG solver described below starts on coarsest level. The solutions found there are used

as initial approximation for finer level solutions where more eigenvectors are added if needed. The

cluster completion is tested on all new finest levels and performed on several levels until the clusters
are stabilized.

Adaptive-FMG(m, q, A)

Set k=l, q'=0, j=0, Ip=k, Ic=k

Until (q' >_ q or qr >_ a dim/c) Perform

(j, Uk, A, Tk, q') _Add-Cluster(j, Ak, Uk, A, Tk, Ip, lc, q')

(Uk, A, Tk) _Adaptive-MGP(k, Ak, Uk, A, Tk, Ip, Ic, q')
Until k > m Do:

Ifk<m then:

Set k=k+l, Uk=I__lUk_l, Tk=O
endif

(Ip, Ic) _ Robustness-Test (k, Ak, Uk, A, Tk, Ip, I¢, q')

If (q' _> q) then:

If (Cluster-Completion-Test----TRUE) then:

(Uk, A, Tk) _Adaptive-MGP(k, Ak, Uk, A, Tk, lp, Iv, q')
Else

T j -" _ClusterCompletion(j, Ak, U_, AJ, T_, ij, lJ, q')(uLAJ, J
(Uk, A, Tk) _-Adaptlve-MGP(k, Ak, Uk, A, Tk, Ip, Ic, q')

endif

Else

Until (q_ _> q or q_ >_ _ dimk) Perform
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(j, Uk, A, Tk, q') _Add-Cluster(j, Ak, Uk, A, Tk, Ip, Ic, q')

(Uk, A, Tk) ---Adaptive-MGP(k, Ak, Uk, A, Tk, Ip, Ic, q')
endif

Endo

The notation k-FMG-V(v_, vj) denotes an FMG algorithm in which k cycles, type V, V(vi, v3),

are performed per level, besides the adaptive computations (Cluster-Completion, Add-Cluster and

Robustness-Tests).

Our MG approach differs from previous MG approaches [9],[10], [5], [2], [13], [3], [11], [4], [12],

mainly by: the emphasis on robustness, the adaptive and simultaneous cluster processing, the MG

projection and backrotations, the treatment of eigenvector mixing, and the treatment of close and

equal eigenvalues.

5.6 Computational Example for the Adaptive Algorithm for the Linear

Schr_Sdinger Problem

This section presents a numerical example illustrating the adaptive algorithm for the linear

SchrSdinger eigenvalue problem, shown in [7]. In this case we have e = 0. The example demonstrates
the central difficulties related to clusters and mixing, and illustrates the efficiency of the presented

techniques in overcoming these difficulties. The following difficulties are present: existence of

clusters with very close and equal eigenvalues; the cluster structure is not the same on the different

levels; and the coarse level representation of the solutions is poor. The adaptive FMG algorithm is

described in detail for this case.

The Schr6dinger eigenvalue problem

(_X- V)u = _u (38)

with periodic boundary conditions, defined on 12 = [0, a]d, (d=2 or 3), where a = 2r/10, is consid-

ered. The i'th eigenvalue and eigenvector will be denoted next by A_ and v{. The potential V is

chosen such that distributions of eigenvalues with special difficulties are obtained. The usual second

order finite difference discretization of the Laplacian on rectangular grids is used, although higher

order discretizations could be used as well. Richardson type extrapolations based on the sequence

of solutions obtained on the different levels could be used to obtain higher order accuracy. During

the MG cycles, linear interpolation is used, while in the FMG, when passing to the next new finest

level, local cubic interpolation is used. Gauss-Seidel type relaxations in red-black ordering are used

during the cycles, and Kaczmarz and Richardson relaxations are used on coarsest levels.

The potential V(x, y) = 5 + 3sin(lOx) was considered. The first q = 12 eigenvalues were re-

quired, and have been approximated using an adaptive 1-FMG-V(1,1) algorithm where the coarsest

level was a 4 x 4 grid. The results are presented in Tables 8 and 9.
The boxes in Table 8 show the clusters of close or equal eigenvalues (with minus sign) found by

the algorithm (the formats are chosen to outline the equal digits in clusters). The cluster structure
on the different levels is not the same, i.e., the level 2 cluster structure differs from the level 1

cluster structure. The cluster of 6 eigenvatues on level 1 {/_6 -- /_ll}, with multiplicities 1 - 4 - 1,

has no correspondence on level 2. The first level eigenvalues are poor approximations of the second

level eigenvalues. The eigenvalue A16 on first level is very close to the eigenvalues {Alo - A13} on the

second level. Such cross correspondences give rise to serious convergence difficulties for algorithms

which do not treat them. The coarse level eigenvectors are poor approximations of the fine level

eigenvectors.
The algorithm described in Section 5.5 is used. To clarify the adaptive flow of the algorithm, a

full history of the run is given.
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The algorithmstartedon level1addingeigenvectorsuntil the clustercontaining)h2 was com-

pleted. The last eigenvalue found, Am6,belongs to the next cluster, confirming the completeness of

the last sought cluster. On level 1, _12 belongs to a cluster consisting of two degenerate subspaces,

each of dimension 2, and the eigenvalues corresponding to these degenerate subspaces are close to

within 0(10 -4) relative difference.

The relevant eigenvectors {vl,..., v15} were interpolated to level 2 where they provided initial

guesses for the level 2 problem. Here the completion of clusters restarted but this time working with

the cluster structure from level 1 and using two level cycles. A test was done for the efficiency of a

simultaneous cycle with fine level projection. The cycle was performed to provide first approxima-

tions of the level 2 eigenvalues. The cluster structure and eigenvalues obtained were compared with

the ones of level 1. Since the agreement was not satisfactory, except for vl, a cluster completion

algorithm started with v2. The completion continued until the complete cluster containing the last

sought eigenvector was obtained, (e.g., for level 2, the desired vl2 belongs to the cluster {vl0 - v13},

the completion was ensured by the far value of _14). Then the relevant eigenvectors were updated

by a few cycles.

The solution obtained on level 2 was interpolated to level 3 where a cluster completion test

was satisfied only by the first cluster, vl. The cluster completion algorithm was applied to the

remaining eigenvectors (using robustness-tests and the cluster completion tests). These resulted

in a few cycles per eigenvector. The parameters Ic and lp were found in the following way: 1) for

first cluster {vl }, the values were obtained from previous level since this cluster was stabilized from

level 2; 2) for cluster 2 and 3 {v6 - v9} and {vl0 - v13}, Ic and Ip were taken from level 2 since these

clusters resulted stabilized after the cluster completion on level 3; 3) robustness-tests were used for

cluster 4 since the eigenvalues {_10 - )u3} on level 3 and the the corresponding ones from level 2

were not close enough. Then one cycle V(1,1), was performed for each cluster.

On level 4, the first 3 clusters, eigenvectors {vl - v9) resulted stabilized, and their parameters

were taken from level 3. The cluster completion algorithm was applied to cluster 4, {vl0 - v13},

where a few cycles were sufficient, and the parameters were taken from level 3 since the cluster

resulted stabilized after the cycles.. Then a V(1,1) cycle was performed for each cluster.

On level 5, the cluster completion test was satisfied by all relevant eigenvectors {vl - v13}, all

clusters being stabilized from previous levels. A V(1,1) cycle was performed for each cluster. The

lc and lp for the separate clusters, in the final cycles, on levels 3, 4, 5, were found as follows: for

{vl}: lc = lp = 1, for the other clusters, containing {v2 .... , v_3}, 4 = lp = 2 were obtained, (a test

for the asymptotic convergence rate, for cluster {vl0 - v13}, may lead to Ic = Ip = 3, but such a

test was not used in this run).

The additional last eigenvector obtained in the cluster completion test, used just to ensure

that the previous cluster was complete, was not needed and not used in further steps. Usually

its convergence was poor since the algorithm didn't separate it from the next eigenvectors in its

cluster, e.g., on level 2, )h4 was not separated from the next 7 eigenvectors with close eigenvalues.

The left columns, in Table 9, show the residuals after the cubic interpolation in the FMG.

These residuals decrease with a factor of four (for fine levels) from one level to the next, indicating

a second order convergence towards the differential solution. The right columns, for each level in

Table 9, show the residuals at the end of the cycle in the 1-FMG, on each level, demonstrating a

convergence factor of order 10 -2 for the first cycle on fine levels 4 and 5.

A simultaneous cycle for all clusters with separation on the coarsest common level for all clusters

(here level 2) would improve the efficiency of the first cycle but this was not needed. (This also

would improve the scalar products which resulted of order 10 -4 after first cycle in the FMG, in

this case. Accurate orthogonality is obtained by the algorithm described in the next example).

This algorithm is of order O(qN) if one does not use fine level separation inside the clusters.

31



The adaptivecoarselevelworkon levels1, 2, took approximately1/6 of the total computertime
andon levels1, 2, 3, approximately1/4 of the total computertime. This is a fixed time and it
wouldbeequivalentto 1/16of the total computertimeif level6 wouldbeemployedtoo.
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E

I

2

3

4

5

6

7

8

9

I0

II

12

13

14

15

16

level 1 level 2 level 3 level 4 level 5

.496347395806E+1 .495721389176E+1 .495552134150E+1 .495509317773E+1 .495498173425E+I

•104874695012I_+3.860204208719E+2

.860204208719E+2

.860569469139E+2

.860569469139E+2

.1670 E+3

•167113893828E+3

.167113893828E+3

.167113893828E+3

•167113893828E+3

•16715 E+3

.248170840742Eq-3

.248170840742E+3

.248207366784E+3

.248207366784E+3

.329264313697E+3

.999213342469E+2

.999213342469E+2

.9995 E+2

.99998 E+2

.194919376181E-{-3

.194919376181E+3

.194962161804E+3

.194962161804E-{-3

.329185001547E+3

.329185001547E+3

.329227787655E+3

.329227787656E+3

•424191908011E+3

.424295844705E+3

.103677004418E+3

.103677004418E+3

.10371 E-l-3

.10375 E+3

•202435153808E+3

•202435153808E-}-3

.202479632146E-I-3

.202479632146E-I-3

.384812002762E+3

.384812002762E+3

.3848590736 E+3

•3848590739 E+3

.483580557031E+3

.104634633842E+3

.104634633842E+3

.1046 E+3

.1047 E+3

.204351758395E+3

.204351758395E+3

.204395 E+3

.204396 E+3

.399841022256E+3

•399841022256E+3

•399888846 E+3

•399888846 E+3

.499567983067E+3

.I04874695012E+3

.I0491E+3

.I0495E+3

.204831900326E+3

.204831900326E+3

.204876918643E+3

.204876918643E+3

.403673103803E+3

.403673103808E+3

.403720980600Eq-3

.403720980600E-1-3

Table 8: The first 16 eigenvalues (E) of the discretized SchrSdinger eigenvalue problem in 2D, on

5 levels, computed by an 1-FMG-V(1,1) adaptive algorithm. The boxes represent the clusters of

eigenvahes obtained on each level at the end of the last MG cycle. The different formats show the

equal digits of eigenvalues in each cluster.

E

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

level 1 level 2 level 3 level 4 level 5

.60E-I .64F-_04 .15E-I .14E,-04.48E+2 .37E-13

.S3E+2 .44E-13

.61E+2 .38E- 13

.66E+2 .68E-13

.55E+2 .39E-13

.52E+2 .12F,,-I 2

.59E+2 .31E-12

.61E+2 .20E-12

.62E+2 .17E-12

.73E4-2 .13E-12

.58E+2 .34E-12

.54E+2 .39E--I 2

.51E+2 .70E--12

.44E+2 .96E-12

.53E+2 ,16E-12

.69E+2 .19E-06

.69E+0 .97E-13

.30E-1-2 .14E-12

.30E+2 .80E-13

.30E+2 .17E,-12

.30E+2 .24E-12

.llE+3 .32E,- 12

.45E+2 .54E-11

.45E+2 .57E-11

.45E+2 .71E-11

.45E+2 .15E,-09

.llE+3 .41E-09

.12E+3 .81E-11

.12E+3 .50E-04

.12E+3 .19E-05

.12E+3 .55E+01

.22E-I-0 .30E-12

.llE+2 .35E-12

.llE+2 .29E,-12

.11E-.t-2 .3OE,-12

.llE+2 .45F_,- 12

.16E-]-2 .35E-12

.16E+2 .32E-12

.16E+2 .41E-12

•16E+2 .33E-12

.12E+3 .30E-09

.12E-1-3 .16E-09

.12Eq-3 .26E-09

,12E+3 .50E-09

.12E-I-3 .17E-06

.30E+l .86E-03

.30Eq-1 .86E-03

.30E-l- 1 .54E-02

.30E+l .54E-02

.44E+ 1 .42E--02

.44E+1 .42E-02

.44E+ 1 .39E-02

.44E+1 .16E-02

.43E+2 .72E-08

.43E+2 .20E-08

.43Eq-2 .21E--05

.43E+2 .16E-05

.44E+2 .34E-02

.76E+0 .73E-04

.76E+0 .73E-04

.76E+0 .llE-02

.76E+0 .11E-02

.llE+I .82E-03

.llE+I .82E-03

.11E+I .83E-03

• 11E+I .93E-03

.12E+2 .33E-02

• 12E4-2 .33E,-02

.12E+2 .29E-01

.12E-1-2 .29E-01

Table 9: The residuals of the 16 eigenvectors (E) of the discrete SchrSdinger eigenvalue problem

in 2D, on 5 levels, computed by an 1 -FMG-V(1,1) adaptive algorithm. The residuals in the left

column are computed after the interpolation to the new fine level, and the residuals in the right

column are computed at the end of work on each level, during the FMG. The decrease of the

residuals by a factor of four from one level to the next (on fine levels, left column) indicate a second

order convergence towards the differential solution. The left columns show the convergence factor

of order 10 -2 for the first fine level V(1,1) cycle.
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5.7 Observations on the Algorithms

Observations and details of the algorithms, not introduced before in order to keep the exposition

simpler, are mentioned in this section.

1) When the operators Ai are obtained by discretizing differential problems, it is not needed

to compute and store Ai.

2) In the shown examples, only local operations are needed in relaxations, transfers and cor-

rections, operations which involve only the unknown at each point and its neighbours.

3) Different relaxations can be used in the algorithms, like damped Jacobi, SOR, Richardson,

Kaczmarz, block relaxations, see for example [1]. We consider two types of relaxations 1) power

type iterations ( with shifts), e.g. Richardson relaxations for operator H:

u"+1 = (I - w(H - #I))u '_ (39)

and 2) solver type relaxations like Kaczmartz or Gauss-Seidel.

To approximate eigenspaces, at the initial stages when eigenvalues are poorly approximated,

one can use power relaxations which are generally slow but safe. If the eigenvalues are enough

separated and well approximated then solver relaxations may separate the eigenvectors. Gauss-

Seidel relaxations are generally faster than power relaxations but can be unsafe, e.g. amplifying

unwanted eigenvectors if the eigenvalues are not accurate. In the numerical presented tests, the

red-black ordering Gauss-Seidel relaxations were performed.
On the GRRP

1) For the GRRP, the matrix A is not needed, but it is enough to provide a procedure that

calculates AU. No operations are performed on the matrix A, e.g., to precondition or bring A to

a special form.

2) The vectors U T in (16) can be replaced by a more general set of vectors yT.

3) Solutions (E,A) of (15) may not exist. However, as in the usual Rayleigh Ritz Projection,
an E and a A can be found such that the projection of the residual of (15) on the columns of U is

minimized, i.e., performing GRRP.

4) The complexity of solving the generalized eigenvalue problem in GRRP on the coarsest level,

for q vectors, is of order O(q 3) which is often much smaller than O(q2N), the cost of computing E

and A on a fine level. By this procedure the fine level eigenvalues are computed on coarse levels.

The coarse level updated eigenvalues enhance the efficiency of MG cycles.

On MG Solver Cycles

1) In the presented form, the MG solver cycles update the solutions simultaneously but MG

solver cycles can be performed sequentially, in turns for each eigenvector or for each cluster.

2) Other types of solver cycles can be defined in the same way, incorporating different sequences

of visiting the levels, e.g., W type cycles [1]. The usage of W cycles was generally not needed in

algorithms, although in some cases the convergence rate for W cycles was better, but also the work

increased by W cycles. Sometimes 1¥ cycles increase the mixing of solutions.

3) Additional procedures can be performed during the MG cycles, like updating the eigenvalues

by Rayleigh Ritz quotients.

On MG Combined Cycles

1) At different stages of the MG combined cycle, for example on the coarsest level only, the

solutions can be normalized using an FAS normalization, i.e., setting ]lUll = T where T is a scalar

computed like in (5) where FU is replaced by IIUI]. This can be done after the backrotations but

normalization of solutions can be performed also on the finest level. Accurate normalization, if

needed, can be performed as the last step on the finest level, e.g., in the last cycle of the FMG.

This does not change the complexity of the algorithm.
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2) TheMGPis alsoin agreementwith thegeneralprincipleof performing global steps on coarse
levels.

On Adaptive FMG Algorithms

1) On coarse levels, only a part of the sought eigenvectors may be approximated, e.g., if the

coarse levels cannot approximate more eigenvectors. More eigenvectors can be added and processed
on finer levels.

2) Transfers from fine to coarse levels may not conserve the dimensions of the transferred

subspaces. This difficulty is handled by robustness tests (which do not detect the loss of dimension

but the inefficiency of the MG cycles in such situations).

3) The separation of solutions Uj = UjE cannot be combined for any E with the usual FAS

correction of Ui, (6), since this would usually destroy an exact solution Ui, e.g., if E is not the

identity but a permutation matrix. To overcome this difficulty we propose a backrotation FAS
correction:

Ui = UiE + Ii(U j - IJuiE), Ti = TiE, (40)

In this correction the right hand side T is updated also. In (40) the multiplication UiE is of the

same order of work as needed for an Rayleigh Ritz separation for Ui. Still, the cheaper correction

(6) can be used instead of (40) when solution are sufficiently accurate and using backrotations.

This is shown by the computational examples too. The correction (40) can be used on coarse levels

and when the solutions are not well enough approximated.

4) Computational difficulties may occur for degenerate subspaces when any matrix E is a

solution of GRRP. In such cases, during an MG combined cycle, E will mix the coarse solutions and

destroy the fine ones after interpolation, (see, for example, that orthogonality will be destroyed).

Similar or worse difficulties are obtained for clusters of eigenvalues since the algorithms act on

approximated clusters as on degenerate spaces, i.e., mixing solutions. These difficulties are treated

by the backrotations, as shown in the computational examples.

5) In Adaptive-MGP the clusters are treated sequentially and within each cluster the solutions

are treated simultaneously by a combined MG cycle Solve-MGP.

6) A simultaneous cycle for several clusters is obtained by grouping the clusters into a single

larger cluster and applying Adaptive-MGP to it. This can be used to improve the separation

between clusters and it is particularly useful on coarse levels at initial stages of the FMG when

clusters are not separated well enough.

7) If for each cluster the GRR-BR projection is performed on finest level, the algorithm still

requires less work than an algorithm performing the fine level projection for all clusters simultane-

ously.

8) If mi_ng occurs on coarse levels, (as often happens since here the solutions are poorly

represented), one may expect an algorithm using fine level separation to have a poor efficiency

or even not converge. A coarse level separation usually restores the convergence or improves the

efficiency in such cases.

9) For well separated eigenvalues the projection may not be needed except at initial coarse

level stages of the FMG, later the eigenvalues determine the separation of eigenvectors via the

MG-Solver-Cycles. The same holds for well separated clusters which do not need a simultaneous

separation. This is especially useful for a larger number of eigenvectors, belonging to well separated

clusters, (e.g., already for 10 eigenvectors the improvement can be noticeable).

10) The number of relaxations can vary with level and cluster. In the computational tests one

or two relaxations per fine level passing were performed.

11) In particular cases, parameters of subroutines such as number of relaxations and parameters

of relaxations can be obtained by Fourier analysis. Robustness tests allow to find such parameters
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in generalcases.

6 Conclusions

An MG simultaneous algorithm for a nonlinear SchrSdinger eigenvalue problem is presented. The

algorithm combines the following techniques: the MG projection and backrotations; the MG sub-

space continuation technique; the FAS treatment of global constraints; the simultaneous processing

of eigenvectors, nonlinear potential and global constraints. In the computational examples, the

simultaneous MG technique reduced the large number of sequential selfconsistent iterations to one

MG simultaneous iteration (1-FMG here). One simultaneous cycle involves less computations than

one sequential cycle (updating eigenvectors sequentially and separating them on finest level) due to

the cheap coarse level separation by the MGP and backrotations. The MG subspace continuation

techniques, coupled with the simultaneous processing on all levels helped keeping the approximated

solution in a right neighborhood where the algorithm is efficient. MG projections and backrotations

are used to separate the eigenvectors by coarse level work and to overcome difficulties due to close

or equal eigenvalues. Robustness is obtained from the adaptive completion of clusters and from

tests which monitor the algorithm's convergence and efficiency.

Computational examples for the nonlinear SchrSdinger eigenvalue problem in 2D and 3D hav-

ing special computational difficulties, which are due to equal and closely clustered eigenvalues,

are presented. For these cases, the algorithm requires O(qN) operations for the calculation of q

eigenvectors of size N. The algorithm achieved the same accuracy, using the same amount of work

(per eigenvector), as the Poisson MG solver. A second order approximation is obtained using the
5-point in 2Dand 9-point in 3D discretized Laplacian, by I-FMG-V(1,1)in O(qN)work. The work

was of order of a few (about 8) fine level Gauss-Seidel relaxations per eigenvector. Constant conver-

gence rate per cycle of 0.15 was obtained for the presented cases. The robustness of the algorithm

has been demonstrated on problems with eigenvalue distributions that present special difficulties.

The numerical tests showed that an accurate fine level separation was obtained by the coarse level

projection, even for problems with very close or equal eigenvalues. This reduced the expensive fine

level separation work of order O(q2N) of previous algorithms, to coarse level work of order O(qN).
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